

Expediente: 051970542716 RE-01597-2024

Sede: SANTUARIO

Dependencia: Grupo Recurso Hídrico Tipo Documental: RESOLUCIONES

Fecha: 16/05/2024 Hora: 11:06:02 Folios: 14

RESOLUCION N.º

POR MEDIO DE LA CUAL SE AUTORIZA UNA OCUPACIÓN DE CAUCE Y SE TOMAN **OTRAS DETERMINACIONES**

EL SUBDIRECTOR DE RECURSOS NATURALES DE LA CORPORACIÓN AUTÓNOMA REGIONAL DE LAS CUENCAS DE LOS RÍOS NEGRO-NARE "CORNARE", en uso de sus atribuciones legales y delegatarias y

CONSIDERANDO

Que mediante Auto Nº AU-04252 del 27 de octubre del 2023, se dio inicio al trámite ambiental de AUTORIZACIÓN DE OCUPACIÓN DE CAUCE, presentado por la GOBERNACION DE ANTIOQUIA, con Nit 890.900.286-0, a través de la SECRETARIA DE INFRAESTRUCTURA FÍSICA, para la construcción de unas obras hidráulicas, en beneficio del proyecto denominado "MEJORAMIENTO DE LA VÍA COCORNÁ – EL RAMAL (GRANADA) CÓDIGO (60AN17-1) TRAMO 1, EN LA SUBREGIÓN ORIENTE DEL DEPARTAMENTO DE ANTIOQUIA", en predios ubicados en las veredas San Juan, El Choco, Montañita, La Peña y El Vidal, identificados con FMI números 018-179371, 018-153637, 018-186251, 018-157570, 018-154553, 018-154552, 018-108450, 018-21661, 018-96516, 018- 58747, 018- 125363, y Fichas prediales N° 12301430, y 7503018, del municipio de Cocorná, Antioquia.

Qué atención al trámite ambiental, se realizó visita técnica el día 8 de noviembre del 2023 y verificó la documentación presentada en la solicitud, a lo cual La Corporación le requirió a la GOBERNACIÓN DE ANTIOQUIA, por medio del Oficio Radicado Nº CS-14653 del 12 de diciembre de 2023 ajustar, aclarar y complementar la información presentada.

Mediante Auto CE-00219-2024 del 26 de enero de 2024, en atención a Escritos con Radicados N°CE-00689 y CE-01267 del 15 y 24 de enero de 2024, se concedió prórroga a la GOBERNACION DE ANTIQUIA, para presentar la documentación requerida mediante Oficio con radicado CS-14653 del 12 de diciembre de 2023.

Que mediante escrito con radicado CE-02939-2024 del 20 de febrero de 2024, la GOBERNACION DE ANTIQUIA, da respuesta a unos requerimientos, escrito al que se dio respuesta mediante oficio con radicado CS-04701-2024 del 02 de mayo de 2024, solicitando la presentación de información complementaria.

Mediante Radicados CE-07446-2024 del 06 de mayo, y CE-07446-2024 del 07 de mayo de 2024, la GOBERNACION DE ANTIOQUIA, allega respuesta a los requerimientos.

Que una vez evaluada la información aportada por el usuario en estudio, relacionada con las fuentes a intervenir, personal técnico de la Subdirección de Recursos Naturales - Grupo de Recurso Hídrico, en cumplimento de las funciones atribuidas en el artículo 31 numerales 11 y 12 de la Ley 99 de 1993, realizada visita el día 8 de noviembre del 2023, a la fuente hídricas denominadas "Sin Nombre", generándose el informe técnico N°IT-02746-2024 del 15 de mayo de 2024, dentro del cual se formularon las siguientes observaciones y conclusiones las cuales son parte integral del presente acto:

"(...)

3. OBSERVACIONES

3.1 Localización del sitio:

La vía "Cocorná - El Ramal (Granada)" se encuentra localizada en la subregión Oriente, es la vía principal de acceso a la cabecera del municipio de Cocorná. Específicamente el análisis se realizó entre el K1+070 a 1+940.

Ruta: \\cordc01\S.Gestion\APOYO\Gestión Jurídica\

Vigente desde:

F-GJ-174 V.03

Mapa Nº 1. Localización de obras hidráulicas proyectadas en la Vía Cocorná - El Ramal (Granada).

Fuente: Gobernación de Antioquia

3.2 Información allegada por el interesado:

Se presenta un tomo con cuarenta y seis (46) folios denominado "ESTUDIO HIDROLÓGICO E HIDRÁULICO OBRAS SUSCEPTIBLES DE OCUPACIÓN DE CAUCE- COCORNÁ - EL RAMAL (GRANADA) K01+070- K01+940, el cual contiene: Introducción, localización, diseño hidráulico, estudios hidráulicos, componente hidráulico, análisis de resultados, socavación, conclusiones, bibliografía y anexos.

Parámetros Geomorfológicos

Parámetro Geomorfológicos	Cuenca 1 (K01+117)	Cuenca 2 (K01+253)	Cuenca 3 (K01+640)	Cuenca 4 (K01+860)	Cuenca 5 (K01+940)
Nombre de la fuente:	Sin nombre				
Área de drenaje (A) [km²]	0.0164	0.0352	0.00358	0.028	0.0297
Longitud de la Cuenca (Lc) [km]	-	-	-	-	-
Longitud del cauce principal (L) [km]	89.33	276.19	364.07	78.35	180.2
Cota máxima en la cuenca [msnm]	-	-	-	81.	-
Cota máxima en el canal [msnm]	-	-	- 4	7/2.	-
Cota en la salida [msnm]	-	-	- ~0	<u>-</u>	-
Pendiente media la cuenca (Sm) [%]	0.26	0.13	0.19	0.28	0.39
Pendiente media del cauce principal (Pm)	0.27	0.14	0.20	0.29	0.40
[%]		9 1411	101.		
Estación Hidrográfica Referenciada	OMA DEC	Cod	corná (23080)	750)	
Tiempo de Concentración (Tc) [min]	6.0	9.0	13	5.0	7.0
Caudal Método 1 (Método Racional) [m³/s]	1.12	1.84	1.47	0.21	2.03
Caudal Método 2 (Método Burkli – Ziegler)	0.56	0.65	0.56	0.17	0.97
[m³/s]					
Caudal Método 3 (Método Mc Math) [m³/s]	0.43	0.57	0.49	0.10	0.79
Caudal de Diseño Tr 100 años [m³/s]	0.70	1.02	0.84	0.16	1.26

El proyecto consiste implementación de cinco (05) obras de cruce, con actividades que comprenden demolición y remplazo de las obras existentes en las abscisas K01+117, K01+253, construcción de una alcantarilla en la abscisa K01+860 y prolongación de una alcantarilla en la abscisa K01+940, sobre cinco (05) fuentes denominadas sin nombre sobre la Vía Cocorná - El Ramal (Granada),

Ruta: \\cordc01\S.Gestion\APOYO\Gestión Jurídica\

Vigente desde:

F-GJ-174 V.03

Conectados por la Vida, la Equidad y el Desarrollo Sostenible

La obra de la abscisa K01+640, existe actualmente, y de acuerdo a la información entregada en el estudio hidrológico e hidráulico, no será objeto de evaluación del trámite de ocupación de cauce motivado a solo se realizarán labores de limpieza en esta obra.

A continuación, se presentan las características de las obras a implementar

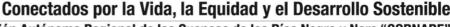
					Tipo	de la		
	Obra	N°:		1	0	bra:	Tubería abscisa	K01+117
Nomb	Nombre de la Fuente: Sin Nombre					bre	Duración de la Obra:	Permanente
Coordenadas							Longitud(m):	16.90
LONG	LONGITUD (W) - X LATITUD (N				D (N) Y	Ζ	Diámetro(m):	0.90
-75	10	45.98	6	3	54.24	1451.8	Pendiente Longitudinal (m/m):	0.13
				1	-	V) /	Capacidad(m³/seg):	0.70
-75	10	45.717	6	3	53.937	1444.8	Cota Lámina de agua de la fuente de Tr= 100 años (m)	1417.49
		17		100			Cota Batea (m)	1414.54

- Se propone el reemplazo de una obra existente de 36" de 10.40 m de longitud por una obra con dos tramos de tubería de 36", el primer tramo con una longitud de 10.4 m y el segundo de 4.3 m de longitud, desde el encole al descole se tiene una longitud de 16.90m. Entre ambos tramos de tuberías se propone una caja en concreto de transición como se observa en los planos y en la modelación hidráulica entregada, con dimensiones de 1.5 m de ancho y 2.13 m de alto de acuerdo a lo obtenido de la sección modelada.
- Los datos de Cota Lámina de agua de la fuente de Tr= 100 años y Cota Batea de la obra se toman en la modelación digital desde el encole en el tramo 1 de tubería a la cota de batea en el descole del tramo 2 de tubería.

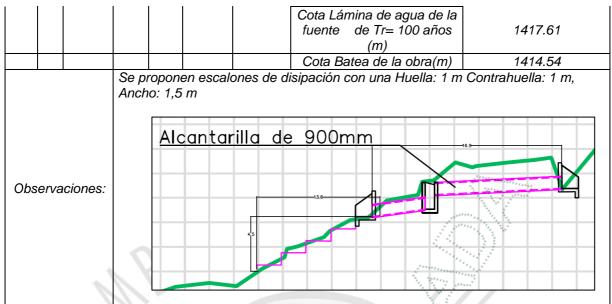
Coordenadas inicia x: 878008,121 y: 1162563.8 Observaciones: Alcantarilla Diametro: 0.9 Longitud total: 16.9 m Coordenadas fin x: 878016.42 y: 1162547.62 Canal escaloriado Longitud total: 13,6

		2	. A		Tip	o de la					
	Ob	ora N°:	The same	. 2)bra:	Disipadores abscisa K01+117				
- /	Nombre de la										
	Fuente: Sin Nom			Sin Nom	bre	Duración de la Obra:	Permanente				
	Coordenadas				S		Altura(m):	<i>4.50</i>			
LON	LONGITUD (W)										
	-)	X	LA	TITUD	(N) Y	Z	Ancho(m):	1.50			
							Longitud(m):	13.60			
							Pendiente longitudinal (%)	0.29			
-75	10	45.717	6	3	53.937	1444.8	Profundidad de				
					Socavación(m):	0.023					
							Capacidad(m³/seg):	0.70			

Ruta: \\cordc01\S.Gestion\APOYO\Gestión Jurídica\


Vigente desde:

F-GJ-174 V.03



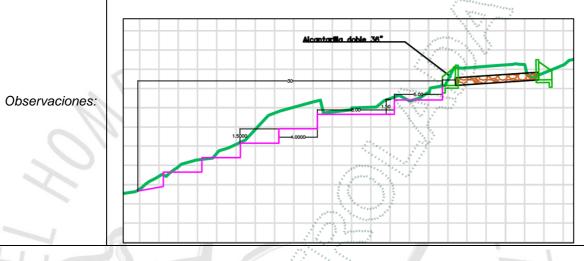
					Tipo	de la	" A Company of the Co			
	Obra			3	O	bra:	Tubería doble absci	sa K01+253		
Nomk	re de	la Fuent	e:		Sin Nom	bre	Duración de la Obra:	Permanente		
			rdena	adas			Longitud(m):	8.60		
LONG	ITUD	(W) - X	LA	TITU	D(N)Y Z		Diámetro(m):	0.90		
	J	16)		=//	,	Pendiente Longitudinal			
-75	10	43.17	6	3	57.49	1456.5	(m/m):	0.07		
	12		1				Capacidad(m³/seg):	1.02		
							Cota Lámina de agua de			
-75	10	43.112	6	3	57.387	1459.3	la fuente de Tr= 100 años	1425.46		
6.4						2000000	(m)			
						8,, 900	Cota Batea (m)	1424.31		
	8	20.		BR/	K1+	253//	AUA	62661.981		
Obser	/acion	es:					Alcantarilla doble Digmetro: 0.9 m Longitud total: 8.6 m	Coordenadas fin x: 878096.67 x: 1162653.44		
	200	1			1///		Canal escalonado Longitud total: 30 m			

		116666			Tipo	o de la						
	Obra N°: 4				0	bra:	Disipadores abscisa K01+253					
1	Nombre de la											
	Fuente: S				Sin Nom	bre	Duración de la Obra:	Permanente				
		С	oorde	enada	S		Altura(m):	10.96				
LON	LONGITUD (W) -											
	X L			TITUL) (N) Y	Z	Ancho(m):	2.50				
-75	-75 10 43.112 6 3 57			57.387	1459.3	Longitud(m):	30					

Ruta: \\cordc01\S.Gestion\APOYO\Gestión Jurídica\


Vigente desde:

F-GJ-174 V.03



			Pendient	te longitudinal ((%)	0.37
			Pro	ofundidad de		
			Soc	cavación(m):		0.68
			Capa	cidad(m³/seg):		1.02
				nina de agua d		4.40.4.60
			tuente	de Tr= 100 añ (m)	os	1424.60
			Cota Ba	tea de la obra(m)	1413.33

Se proponen escalones de disipación con una Huella: 4 m Contrahuella: 1,5 m y Ancho: 2,5 m, con una altura de 10.96 de acuerdo con las cotas que se observan en la modelación hidráulica.

					Tip	o de la		
	Obra	N°:		5		bra:	Tubería abscisa	K01+860
Nombre de la Fuente: Sin Nombre					Sin Non	nbre	Duración de la Obra:	Permanente
Coordenadas						*,,,,,,,,,,	Longitud(m):	8.10
LONGITUD (W) - X LATITUD (N) Y Z				(N) Y	Z	Diámetro(m):	0.90	
100						22.22.2	Pendiente Longitudinal	
-75	10	30.92	6	4	6.62	1494.0	(m/m):	0.01
						and the second	Capacidad(m³/seg):	0.16
						" constant	Cota Lámina de agua de	
-75	10	30.90	6	4	6.468	1499.8	la fuente de Tr= 100 años	1468.61
						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(m)	
					"",	Leee ⁶	Cota Batea (m)	1468.09

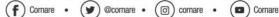
Se proyecta la construcción de una obra de cruce vial nueva, que consiste en una tubería de 36", El encole se realizará a través de una caja en concreto de 2.0 m de ancho y 2.15 m de altura, de acuerdo a lo obtenido de la modelación hidráulica presentada en Hec Ras.

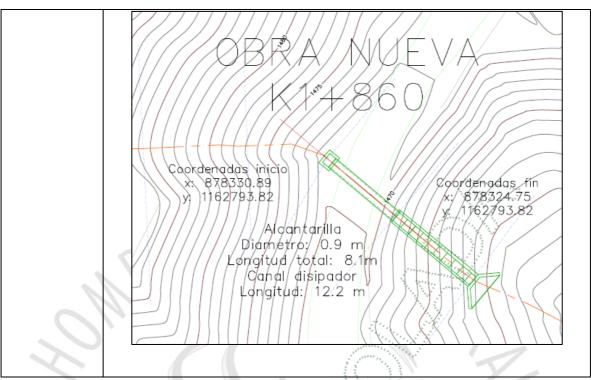
Observaciones:

No se consideran las coordenadas incluidas en el plano de planta, dado que estas difieren de lo que se presenta en el informe hidráulico, las cuales coinciden con lo verificado en campo.

Ruta: \\cordc01\S.Gestion\APOYO\Gestión Jurídica\

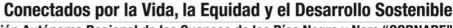
Vigente desde:

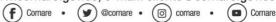

F-GJ-174 V.03

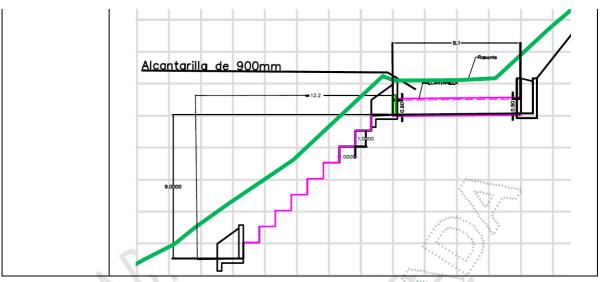


						in the second		
Obra N°: 6			6		o de la Obra:	Disipadores abscisa K01+860		
Nombre		10/4	U	1/1	biu.	Dioipadores absolut	171071000	
Fuer				Sin Nom	hre	Duración de la Obra:	Permanente	
7 401		oorde	nada		ibi O	Altura(m):	9.0	
LONGITUD (W)					The standards	0.0		
- X	J (11)	LAT	TTUD	(N) Y	Z ,	Ancho(m):	2.0	
1//					300	Longitud(m):	12.2	
Ami				700	22,222,22	Pendiente longitudinal (%)	0.74	
-75 10	30.90	6	4	4 6.468	1499.8	Profundidad de		
						Socavación(m):	0.49	
				,122.0	The transmit	Capacidad(m³/seg):	0.16	
		A	W.			Cota Lámina de agua de la		
					11111	fuente de Tr= 100 años	1468.31	
					**********	(m)	,	
	2		,	**********		Cota Batea de la obra(m)	1459.03	
Observaciones: Se proyecta implementar de 9 m, Huella: 1 m Contr						na obra de disipación tipo escalo nuella: 1 m y Ancho: 2 m	nes con una longiti	

Ruta: \\cordc01\S.Gestion\APOYO\Gestión Jurídica\


Vigente desde:


F-GJ-174 V.03



					the state of the s					
	Obr	a N°:		7	-	o de la Obra:	Ataguía abscisa K01+860			
Nomi	bre de	e la Fue	nte:		Sin Nor	nbre	Duración de la Obra:	Provisional		
	Coordenadas						Altura(m):	0.50		
LONG	LONGITUD (W) - X LA			TITUD (N) Y Z			Ancho(m):	No Reporta		
							Longitud(m):	8.10		
	_ //			1			Pendiente longitudinal (%)	0.54		
-75	10	30.92	6	4	6.62	1494.0	Profundidad de Socavación(m):	0.49		
						Á :	Capacidad(m³/seg):	0.08		
-75	10	30.90	6	4	6.468	1499.8	Cota Lámina de agua de la fuente de Tr= 100 años (m)	1470.46		
						2222 10 10	Cota superior de la obra (m)	1457.46 -1470.51		
Obse	ervaci	ones:					oral que cosiste en una atagui rante el proceso constructivo j			
grifaner pare										

	2					3' 3			
						o de la			
	Obra	n N°:		8	O	bra:	Tubería abscisa K01+940		
Nomi	Nombre de la Fuente: Sin Nombre						Duración de la Obra:	Permanente	
	Coordenadas						Longitud(m):	13.5	
LONGITUD (W) - X LATITUD (N) Y Z						Z	Diámetro(m):	0.90	
		OP	100		***		Pendiente Longitudinal	()	
-75	10	30.87	6	4	9.007	1513.5	(m/m):	0.26	
			0	1/ /			Capacidad(m³/seg):	1.26	
		***		.411	TÓN		Cota Lámina de agua de		
-75	10	30.851	6	. 4	8.764	1513.0	la fuente de Tr= 100 años		
			4			MAIN	(m)	1472.67	
		The state of					Cota Batea (m)	1472.38	
		Se	orop	one la	extens	sión de l	a obra existente de geome	tría mixta, que en su	
Obser	بر ماره م	cond	dició	n actu	al tiene	e una se	cción circular de 36" con ui	na longitud de 5 m y	
Obser	Observaciones: sección en Box Coulvert de 0.90 x 0.90m, con una longitud de 5.35 m, la sección								

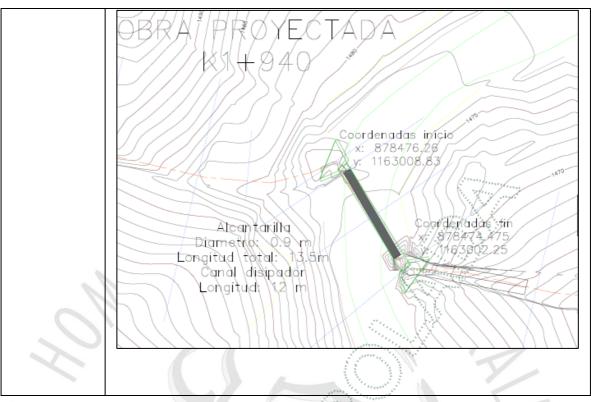
a extender es la circular en una longitud de 8.15m.

sección en Box Coulvert de 0.90 x 0.90m, con una longitud de 5.35 m, la sección

Ruta: \\cordc01\S.Gestion\APOYO\Gestión Jurídica\

Vigente desde:

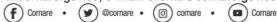
F-GJ-174 V.03



	že.						\	
	Ohr	a N°:		0		o de la Obra:	Diging dayon abasing	V01.040
Manal			4	9	Sin Nor		Disipadores abscisa	
IVOITIE	ore ae	la Fuen			SIN IVON	ibre	Duración de la Obra:	Permanente
1.0010	UTUD			adas	(A () \ (7	Altura(m):	1.50
LONG	עטווו	(W) - X	LA	IIIUL	(N) Y	Z	Ancho(m):	1.0
						3,, 4,	Longitud(m):	12.0
					148	min, in	Pendiente longitudinal (%)	0.47
-75	10	30.851	6	4	8.764	1513.0	Profundidad de	
							Socavación(m):	0.34
						and the second	Capacidad(m³/seg):	1.26
						See	Cota Lámina de agua de la	
			9				fuente de Tr= 100 años	
						and the second	(m)	1470.26
					***	izee.	Cota Batea de la obra(m)	1464.62
Obs	ervac	iones		y And	ho: 1.5	m	900mm	

Ruta: \\cordc01\S.Gestion\APOYO\Gestión Jurídica\

Vigente desde:


F-GJ-174 V.03

Nom	Nombre de la Fuente: Sin Nombre					nbre	Duración de la Obra:	Provisional
		Cod	orden	adas			Altura(m):	1.10
LONG	ITUD	(W) - X	N) - X LATITUD (N) Y			Z	Ancho(m):	No Reporta
							Longitud(m):	6.20
							Pendiente longitudinal (%)	0.22
-75	10	30.87	6	4	9.007	1513.5	Profundidad de	
					Socavación(m):	0.34		
							Capacidad(m³/seg):	0.62
-75	10	30.851	6	4	8.764	1513.0	Cota Lámina de agua de la fuente de Tr= 100 años (m)	1472.72
						0	Cota superior de la obra (m)	1473.48
Obs							oral que cosiste en una atagu rante el proceso constructivo	

3.3 OTRAS OBSERVACIONES:

Hidrología

Con el uso del método de los polígonos de Thiessen se identifica que la estación de incidencia para el proyecto en las cuencas y áreas aferentes de la vía en estudio es la estación COCORNA.

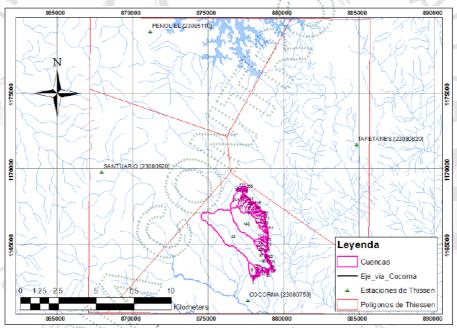
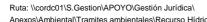
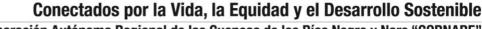
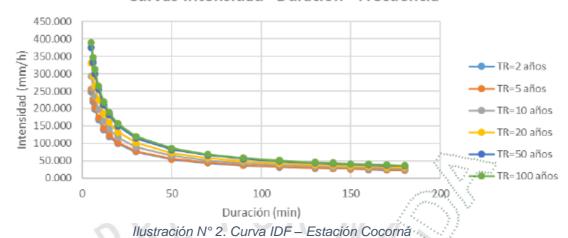



Ilustración Nº 1. Área de influencia - Polígonos de Thiessen

Para determinar la intensidad de precipitación a partir de la información de las series de precipitación multianual obtenidas de la Estación Climatológica Ordinaria Cocorná, se realizaron las curvas sintéticas de Intensidad – Duración – Frecuencia.


Vigente desde:

F-GJ-174 V.03



Curvas Intensidad - Duración - Frecuencia

Para determinar el tiempo de concentración se utilizaron las siguientes metodologías, Kirpich, Temez, Giandotti, Ven Te Chow, Cuerpo de Ingenieros). Se obtienen los siguientes tiempos de concentración se seleccionó el tiempo de concentración promedio dentro de los limites inferior y superior (definidos como la media más o menos la desviación estándar), las características morfométricas y climáticas de la cuenca

			2. 5.						
	Tiempo de C	oncentración (Tc) [min]							
	Obra	K01+117	K01+253	K01+640	K01+860	K01+940			
	Método Kirpich	1.0	3.1	3.4	0.9	1.5			
Γ	Método Temez	1.5	4.1	4.7	1.4	2.4			
	Método Giandotti	9:9	13.8	14.8	5.2	8.5			
	Método Ven Te Chow	5.3	, 13.3	14.4	4.8	7.3			
	Método cuerpo ingenieros	3.4	9.1	10.6	3.1	5.4			
	Límite superior	7.9	13.7	14.9	5.0	8.1			
	Límite inferior	5.0	5.0	5.0	5.0	5.0			
	Tiempo de concentración seleccionado	6:0	9.0	13	5.0	7.0			

Ilustración N° 3. Tiempos de concentración para cada cuenca

Para el cálculo de los caudales de diseño de la cuenca de estudio se consideran los Métodos racional, de Burkli - Ziegler y el de Mc Math

2,00	20221112022111202	m³/s)				
PK	T= 2.33 AÑOS	T= 5 AÑOS	T= 10 AÑOS	T= 25 AÑOS	T= 50 AÑOS	T=100 AÑOS
K01+117	0.35	0.41	0.47	0.55	0.62	0.70
K01+253	0.51	0.60	0.68	0.80	0.90	1.02
K01+640	0.41	0.49	0.55	0.65	0.74	0.84
K01+860	0.08	0.09	0.11	0.13	0.14	0.16
K01+940	0.62	0.74	0.83	0.98	1.11	1.26

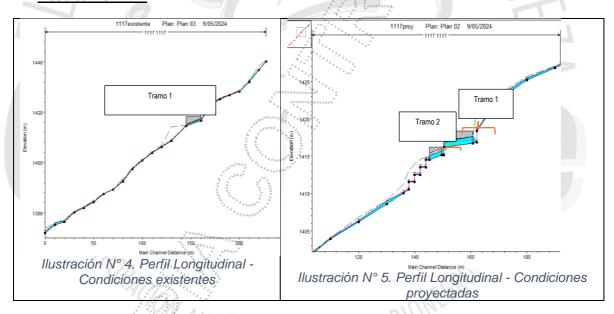
Ruta: \\cordc01\S.Gestion\APOYO\Gestión Jurídica\

Vigente desde:

F-GJ-174 V.03

Visita al sitio

Se realiza visita ocular al sitio de interés donde se observa que las obras de cruce vial propuestas inicialmente en las abscisas K01+117, K01+253, K01+640, K01+940, K02+053 y K02+211 existen actualmente. Mediante oficio con radicado CE-02939-2024 del 20 de febrero de 2024 la parte interesada desiste de la continuación de la solicitud del trámite de ocupación de cauce de las obras de las abscisas K02+053 y K02+211, y la obra en la abscisa K01+640 que se encuentra existe no será objeto del trámite de ocupación de cauce debido a que solo se realizará limpieza a esta. Para el caso de la obra en la abscisa K01+860 se propone la construcción de una obra nueva.


Así mismo se verifican las condiciones actuales de la fuente a su intervención, así como las características geomorfológicas y topográficas.

Hidráulica

Para la modelación de las obras permanente y provisional propuestas se hace uso del programa HEC-RAS y se validan los parámetros de entrada referentes a coeficiente de Manning, régimen de flujo y caudales de diseño, así como las características técnicas de cada obra hidráulica, de igual modo se analiza el comportamiento de la fuente en condiciones actuales y con la obra proyectada.

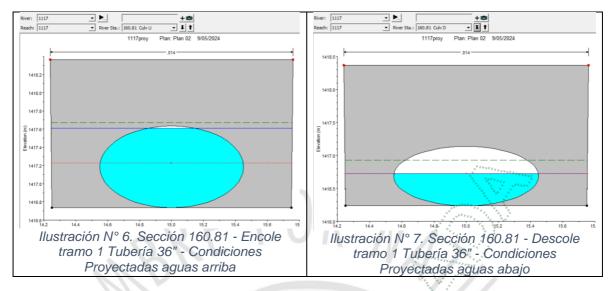
Modelación hidráulica

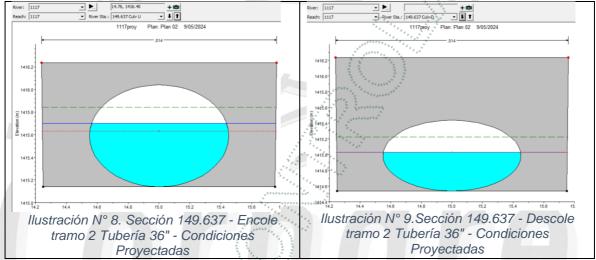
Abscisa K01+117

Ruta: \\cordc01\S.Gestion\APOYO\Gestión Jurídica\

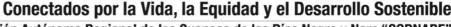
Vigente desde:

F-GJ-174 V.03

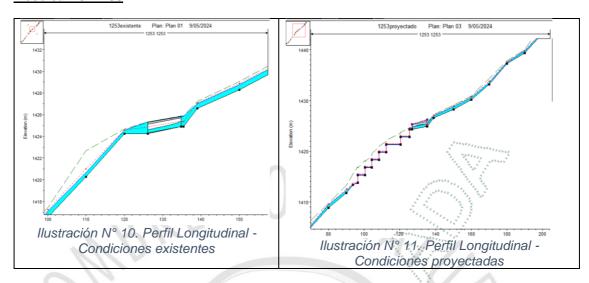


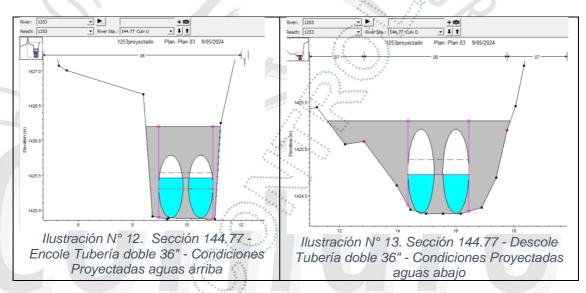


Al verificar el comportamiento de los parámetros velocidad y lámina de agua de la fuente de estudio, se evidencia que la variación más considerable en cuanto a disminución de velocidad y aumento de lámina de agua, se produce antes del encole del primer tramo de tubería de 36" en la Sección 160.82, y en la Sección 130 luego del paso del flujo por la obra de disipación, no obstante, dichas variaciones son aceptables considerando las condiciones del caso, en general el comportamiento de la fuente con las obras proyectadas se encuentran entre los límites establecidos en la Guía de Rondas Hídricas del MADS al presentar incrementos menores al 10% en las velocidades y 30 cm en la lámina de agua, bajo los escenarios existente y a futuro con las obras implementadas


Vigente desde:

F-GJ-174 V.03

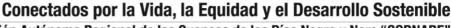




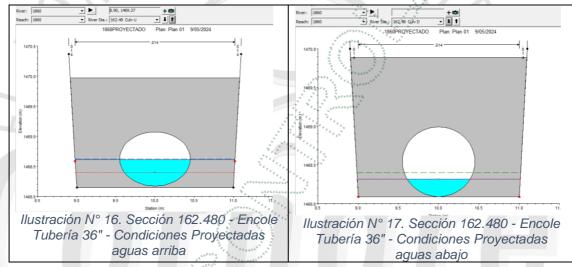
Abscisa K01+253

Al verificar el comportamiento de los parámetros velocidad y lámina de agua de la fuente de estudio, se evidencia que no existen variaciones en velocidad y lámina de agua considerables, es decir el comportamiento de la fuente con las obras proyectadas se encuentran entre los límites establecidos en la Guía de Rondas Hídricas del MADS al presentar incrementos menores al 10% en las velocidades y 30 cm en la lámina de agua, bajo los escenarios existente y a futuro con las obras implementadas

Ruta: \\cordc01\S.Gestion\APOYO\Gestión Jurídica\


Vigente desde:

F-GJ-174 V.03



Abscisa K01+860

Al verificar el comportamiento de los parámetros velocidad y lámina de agua de la fuente de estudio, se evidencia que existen variaciones en velocidad y lámina de aqua considerables en la sección 162.481 la cual coincide con obra de entrada, que consiste en una caja en concreto de 2.15 m, la cual actúa como obra de disipación de energía disminuyendo la velocidad del flujo en un 85.32% y la lámina de aqua en 192 cm o 1.92 m, la otra variación significativa se produce en la sección 120, donde se presenta una disminución en velocidad del 72.61% y un incremento de lámina de agua en 11 cm, la cual se presenta aguas abajo de los escalones disipadores de energía, es decir el comportamiento de la fuente guarda concordancia con las obras proyectadas, las demás variaciones en los parámetros se encuentran entre los límites establecidos en la Guía de Rondas Hídricas del MADS al presentar incrementos menores al 10% en las velocidades y 30 cm en la lámina de agua, bajo los escenarios existente y a futuro con las obras implementadas.

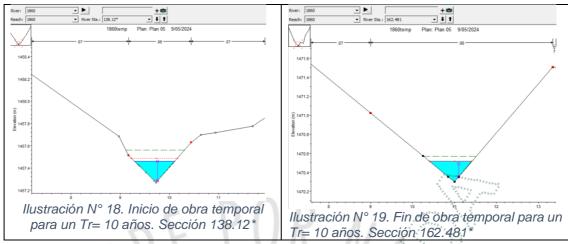
Obra provisional

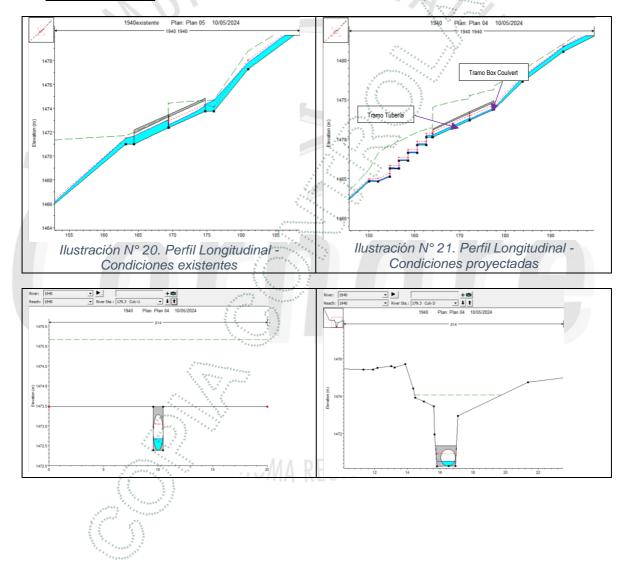
En cuanto a la modelación de la obra provisional proyectada se verifica y observa que la ataguía propuesta a ser implementada durante el proceso constructivo permite el paso del caudal de diseño el cual corresponde al caudal para el Tr= 10 años

Ruta: \\cordc01\S.Gestion\APOYO\Gestión Jurídica\

Vigente desde:

F-GJ-174 V.03



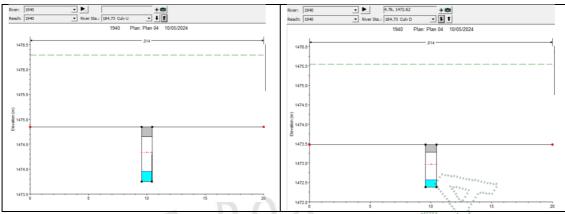


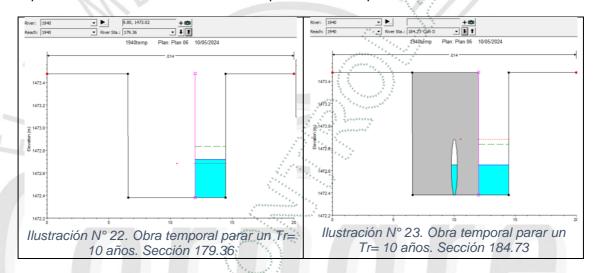
Abscisa K01+940

Ruta: \\cordc01\S.Gestion\APOYO\Gestión Jurídica\

Vigente desde:

F-GJ-174 V.03





Obra provisional

Se propone igualmente una ataguía a ser implementada durante el proceso constructivo permite el paso del caudal de diseño el cual corresponde al caudal para el Tr= 10 años

Socavación

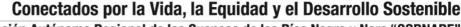
Se estima la socavación general, para lo cual se emplearon las expresiones propuestas por Lischtvan-Levediev (Guevara, 1998), obteniéndose una profundidad de socavación con respecto al fondo del cauce como valor máximo para la abscisa K01+117 de 0.023 m en el sitio de implantación de la proyectada, en la abscisa K01+253 una profundidad de 0.68m. Para la abscisa K01+860 en ambos tramos, la mayor profundidad de socavación es de 0.49 m y en la abscisa 1+940 en los sitios de las obras proyectadas un valor máximo 0.34m.

Por lo que para evitar que el proceso de erosión de la fuente desestabilice a la obra propuesta, la cimentación se propone a una profundidad mínima de 0.80 m.

3.4 Otras observaciones respecto a Medidas de Prevención y Mitigación Ambiental para las Obras Principales de ocupación de cauce planteadas y Complementarias

Se presenta documento denominado CONSULTORÍA PARA LOS ESTUDIOS Y DISEÑO EN FASE III PARA EL MEJORAMIENTO DE LA INFRAESTRUCTURA DE LAS VÍAS EN EL DEPARTAMENTO DE ANTIOQUIA con las actividades propuestas a ejecutar durante el proceso constructivo de las obras permanentes y provisionales, de igual modo se identifican las posibles afectaciones a los recursos naturales, tanto en la etapa de pre-construcción como de construcción, cierre y abandono, así como las medidas de control y mitigación para cada impacto.

Ruta: \\cordc01\S.Gestion\APOYO\Gestión Jurídica\


Vigente desde:

F-GJ-174 V.03

Cronograma de actividades

No se presenta el cronograma de ejecución para las desviaciones de cauce durante el proceso constructivo, no obstante, se menciona dentro de informe técnico presentado en el radicado CE-02939-2024 del 20 de febrero de 2024, que las obras provisionales de las abscisas K01+860 y K1+940, tendrían un periodo de construcción de menos de una semana. Además, se indica que para las obras a implementar en las abscisas K01+117 y 1+253 no se incluye obra temporal ya que la obra existente es suficiente para evacuar el caudal del TR= 2.33 años, por lo que el flujo transcurrirá por la misma mientras se construye la obra paralela

CONCLUSIONES

4.1 El caudal máximo para el período de retorno (Tr) de los 100 Años es:

		Zh.		
Parámetro	Cuenca 1	Cuenca 2	Cuenca 4	Cuenca 5
Nombre de la Fuente:	Sin nombre	Sin nombre	Sin nombre	Sin nombre
Caudal Promedio Tr 100 años [m³/s]	0.70	1.02	0.16	1.26
Capacidad estructura hidráulica [m³/s]:	> 0.70	>1.02	>0.16	>1.26

- 4.2 La solicitud consiste en la autorización para la implementación de cinco (05) obras de cruce, con actividades que comprenden demolición y remplazo de las obras existentes en las abscisas K01+117, K01+253, construcción de una alcantarilla en la abscisa K01+860 y prolongación de una alcantarilla en la abscisa K01+940, sobre cinco (05) fuentes denominadas sin nombre sobre la Vía Cocorná - El Ramal (Granada, de acuerdo al estudio presentado.
- 4.3 Las obras hidráulicas a implementar cumplen para transportar el caudal del período de retorno (Tr) de los 100 años, de acuerdo con el estudio presentado.
- 4.4 Acoger la información presentada mediante el Oficio CE-07446-2024 del 06 de mayo de 2024.
- 4.5 La obra de cruce que se presenta en el estudio hidrológico e hidráulico en la abscisa K01+640, no se incluye dentro del permiso de ocupación de cauce ya que como también se menciona en el estudio en esta obra solo se realizaran labores de limpieza.
- 4.6 Con la información presentada es factible aprobar las siguientes obras:

Número	To provide the second			Coc	rder	nadas		
de la	Tipo de obra							
obra	Zinniiinniiiin	LOI	VGITU	D (W) - X	L	ATITU	JD (N) Y	Z
1	Alcantarilla K01+117 (Inicio)	-75	10	45.98	6	3	54.24	1451.8
ı	Alcantarilla K01+117 (Fin)	-75	10	45.717	6	3	53.937	1444.8
2	Disipadores abscisa K01+117	-75	10	45.717	6	3	53.937	1444.8
3	Alcantarilla doble K01+253 (Inicio)	-75	10	43.17	6	3	57.49	1456.5
3	Alcantarilla doble K01+253 (Fin)	-75	10	43.112	6	3	57.387	1459.3
4	Disipadores abscisa K01+253	-75	10	43.112	6	3	57.387	1459.3
5	Alcantarilla K01+860 (Inicio)	-75	10	30.92	6	4	6.62	1494.0
5	Alcantarilla K01+860 (Fin)	-75	10	30.90	6	4	6.468	1499.8
6	Disipadores abscisa K01+860	-75	10	30.90	6	4	6.468	1499.8
7	Ataguía abscisa K01+860 (Inicio) - Provisional	-75	10	30.92	6	4	6.62	1494.0
	Ataguía abscisa K01+860 (Fin) - Provisional	-75	10	30.90	6	4	6.468	1499.8
8	Alcantarilla K01+940 (Inicio)	-75	10	30.87	6	4	9.007	1513.5
0	Alcantarilla K01+940 (Fin)	-75	10	30.851	6	4	8.764	1513.0
9	Disipadores abscisa K01+940	-75	10	30.851	6	4	8.764	1513.0
10	Ataguía abscisa K01+940 (Inicio) - Provisional	-75	10	30.87	6	4	9.007	1513.5
	Ataguía abscisa K01+940 (Fin) -Provisional	-75	10	30.851	6	4	8.764	1513.0

Ruta: \\cordc01\S.Gestion\APOYO\Gestión Jurídica\

Vigente desde:

F-GJ-174 V.03

4.7 Otras conclusiones:

- Dentro de los planos entregados en formato pdf denominados "PLANOS ESTRUCTURALES ALCANTARILLAS Ø0.90m DETALLES, existen varios detalles y dimensiones que no son legibles, lo cual ya se había mencionado en el radicado CS-14653 del 12 de diciembre del 2023 y CS-04701-2024 del 02 de mayo de 2024, y que no fue resuelto en la respuesta entregada a través del radicado CE-02939-2024 del 20 de febrero de 2024 y CE-07446-2024 del 06 de mayo de 2024.
- Para el desarrollo de cualquier tipo de actividad dentro de los predios de interés se deben considerar las restricciones ambientales y los retiros por Rondas Hídricas para las fuentes que discurren por estos.
- Al verificar el comportamiento de los parámetros velocidad y lámina de agua de las cinco fuentes de estudio, se evidencia que las variaciones en estas son aceptables considerado las condiciones de cada caso, además estas se encuentran entre los límites establecidos en la Guía de Rondas Hídricas del MADS al presentar incrementos menores al 10% en las velocidades y 30 cm en la lámina de agua, bajo los escenarios existente y a futuro con las obras implementadas.
- Se estima la socavación general, obteniéndose una profundidad de socavación con respecto al fondo del cauce entre 0.023m y 0.68m, entre todas las abscisas donde se implementarán las obras propuestas, por lo que para evitar que el proceso de erosión de las fuentes desestabilice a las obras propuestas, la cimentación se propone a una profundidad 0.80 m.
- Se presentan las actividades propuestas a ejecutar durante el proceso constructivo de las obras permanentes y provisionales, de igual modo se identifican las posibles afectaciones a los recursos naturales tanto en la etapa de pre-construcción como de construcción, así como las medidas de control y mitigación para cada impacto."

CONSIDERACIONES JURÍDICAS

Que el artículo 8 de la Constitución Política establece que "Es obligación del Estado y de las personas proteger las riquezas culturales y naturales de la nación".

Que el artículo 79 de la Carta Política indica que: "Todas las personas tienen derecho a gozar de un ambiente sano. La Ley garantizará la participación de la comunidad en las decisiones que puedan afectarlo.

Es deber del Estado proteger la diversidad e integridad del ambiente, conservar las áreas de especial importancia ecológica y fomentar la educación para el logro de estos fines."

El artículo 80 ibidem, establece que: "El Estado planificará el manejo y aprovechamiento de los recursos naturales, para garantizar su desarrollo sostenible, su Conservación, restauración o sustitución...'

La protección al medio ambiente corresponde a uno de los más importantes cometidos estatales, es deber del Estado garantizar a las generaciones futuras la conservación del ambiente y la preservación de los recursos naturales.

Que en relación con el trámite que nos ocupa, es pertinente traer a colación las disposiciones contenidas en los artículos 102 y 132 del Decreto Ley 2811 de 1974, y 2.2.3.2.12.1 del Decreto 1076 de 2015:

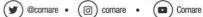
Decreto Ley 2811 de 1974:

"Artículo 102. Quien pretenda construir obras que ocupen el cauce de una corriente o depósito de agua, deberá solicitar autorización (...)".

Ruta: \\cordc01\S.Gestion\APOYO\Gestión Jurídica\

Vigente desde:

F-GJ-174 V.03



"Artículo 132. Sin permiso no se podrán alterar los cauces, ni el régimen ni la calidad de las aguas, ni intervenir su uso legítimo".

• Decreto 1076 de 2015

"Artículo 2.2.3.2.12.1. Ocupación. La construcción de obras que ocupen el cauce de una corriente o depósito de agua requiere autorización, que se otorgará en las condiciones que establezca la Autoridad Ambiental competente. Igualmente se requerirá permiso cuando se trate de la ocupación permanente o transitoria de playas (...)".'

Que de acuerdo con el artículo 2.2.3.2.19.6 del Decreto 1076 de 2015, los proyectos de obras hidráulicas, públicas o privadas para utilizar aguas o sus cauces o lechos deben incluir los estudios, planos y presupuesto de las obras y trabajos necesarios para la conservación o recuperación de las aguas y sus lechos o cauces, acompañados de una memoria, planos y presupuesto.

Que de acuerdo con la evaluación técnica antes citada, teniendo en cuenta lo consagrado en los artículos 102 del Decreto - Ley 2811 de 1974 y 2.2.3.2.12.1 y siguientes del Decreto 1076 y acogiendo lo establecido en el Informe técnico Nº IT-02746-2024 del 15 de mayo de 2024, se autorizará OCUPACIÓN DE CAUCE a la GOBERNACION DE ANTIOQUIA, con Nit 890.900.286-0; a través de la SECRETARIA DE INFRAESTRUCTURA FÍSICA, sobre las fuentes hídricas denominadas "Sin Nombre", para la implementación de obras hidráulicas que se detallarán en la parte resolutiva del presente acto administrativo.

Que es función de CORNARE propender por el adecuado uso y aprovechamiento de los recursos naturales de conformidad con los principios medio ambientales de racionalidad, planeación y proporcionalidad, teniendo en cuenta para ello lo establecido por los postulados del desarrollo sostenible y sustentable.

Que es competente El Subdirector de Recursos Naturales de conocer del asunto y en mérito de lo expuesto.

RESUELVE

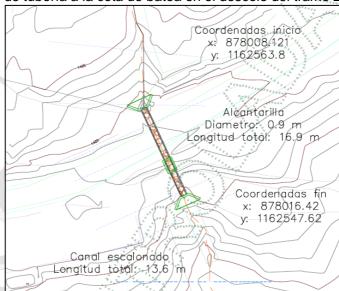
ARTÍCULO PRIMERO: AUTORIZAR la OCUPACION DE CAUCE a la GOBERNACION DE ANTIOQUIA, con Nit: 890.900.286-0, a través de su delegado, el secretario de Despacho de la SECRETARIA DE INFRAESTRUCTURA FÍSICA, el señor LUIS HORACIO GALLÓN ARANGO, sobre las fuentes hídricas denominadas "Sin Nombre" para construir diez (10) obras hidráulicas en desarrollo del proyecto "MEJORAMIENTO DE LA VÍA COCORNÁ – EL RAMAL (GRANADA) CÓDIGO (60AN17-1) TRAMO 1, EN LA SUBREGIÓN ORIENTE DEL DEPARTAMENTO DE ANTIQUIA", en predios ubicados en las veredas San Juan, El Choco, Montañita, La Peña y El Vidal, identificados con FMI números 018-179371, 018-153637, 018 186251, 018-157570, 018-154553, 018-154552, 018-108450, 018-21661, 018-96516, 018 58747, 018- 125363, y Fichas prediales N° 12301430, y 7503018, del municipio de Cocorná, Antioquia, para las siguientes estructuras: UNIONA DECIUNA

		* *	3 3		Tipo	de la	1 (110)		
	Obra	No		1		ora:	Tubería abscisa K01+117		
Nomb	re de	la Fuente	e:		Sin Nom	bre	Duración de la Obra:	Permanente	
	1	Coor	dena	adas			Longitud(m):	16.90	
LONG	ITUĎ	(W) - X	LA	TITU	D (N) Y	Ζ	Diámetro(m):	0.90	
							Pendiente Longitudinal		
-75	10	45.98	6	3	54.24	1451.8	(m/m):	0.13	
							Capacidad(m3/seg):	0.70	
							Cota Lámina de agua de		
-75	-75 10 45.717 6			3	53.937	1444.8	la fuente de Tr= 100		
							años (m)	1417.49	
							Cota Batea (m)	1414.54	

Ruta: \\cordc01\S.Gestion\APOYO\Gestión Jurídica\

Vigente desde:

F-GJ-174 V.03



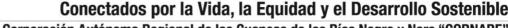
- Se propone el reemplazo de una obra existente de 36" de 10.40 m de longitud por una obra con dos tramos de tubería de 36", el primer tramo con una longitud de 10.4 m y el segundo de 4.3 m de longitud, desde el encole al descole se tiene una longitud de 16.90m. Entre ambos tramos de tuberías se propone una caja en concreto de transición como se observa en los planos y en la modelación hidráulica entregada, con dimensiones de 1.5 m de ancho y 2.13 m de alto de acuerdo a lo obtenido de la sección modelada.
- Los datos de Cota Lámina de agua de la fuente de Tr= 100 años y Cota Batea de la obra se toman en la modelación digital desde el encole en el tramo 1 de tubería a la cota de batea en el descole del tramo 2 de tubería.

Observaciones:

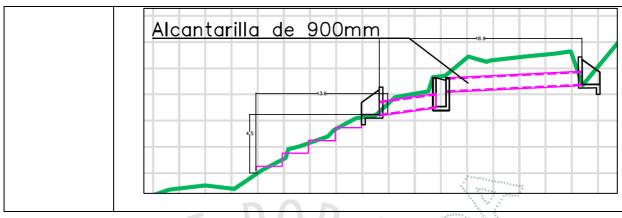
				Same		
Obra	a N°:	2	Tipo de	e la Obra:	Disipadores abscisa k	(01+117
Nombr	e de la		1,00	man la		
Fue	nte:	S	in Nom	ore	Duración de la Obra:	Permanente
	Co	oordenadas	5	"	Altura(m):	4.50
LONGITUI	D (W)			* Assessance		
- X		LATITUD ((N) Y	Z	Ancho(m):	1.50
			11,11		Longitud(m):	13.60
			******		Pendiente longitudinal (%)	0.29
-75 10 4	5.717	6 3	53.937	1444.8	Profundidad de	
	10		The second		Socavación(m):	0.023
	00				Capacidad(m³/seg):	0.70
	14	(3) 2.	4,5		Cota Lámina de agua de la	
		100/			fuente de Tr= 100 años (m)	1417.61
	~,,	1. A/	Tous		Cota Batea de la obra(m)	1414.54
	Se	e proponen	escalor	nes de disip	pación con una Huella: 1 m Cont	trahuella: 1 m,

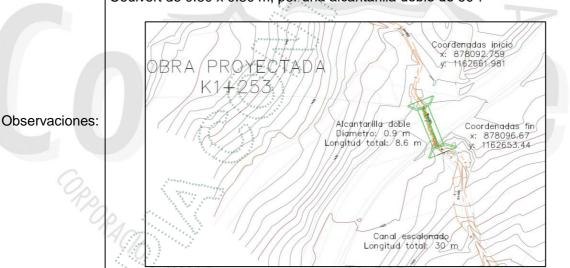
orics ac alsipacio Observaciones: Ancho: 1,5 m

Ruta: \\cordc01\S.Gestion\APOYO\Gestión Jurídica\


Vigente desde:

F-GJ-174 V.03





				Tipo	de la			
Obi	a N°:		3	Ol	ora:	Tubería doble abscisa K01+253		
Nombre d	e la Fuent	e:	10	Sin Nom	bre	Duración de la Obra:	Permanente	
	Coor	dena	adas			Longitud(m):	8.60	
LONGITUI	O (W) - X	LA	TITU	D (N) Y	Z	Diámetro(m):	0.90	
	1					Pendiente Longitudinal		
-75 10	43.17	6	3	57.49	1456.5	(m/m):	0.07	
						Capacidad(m³/seg):	1.02	
						Cota Lámina de agua		
-75 10	43.112	6	3	57.387	1459.3	de la fuente de Tr= 100		
						años (m)	1425.46	
	(7)					Cota Batea (m)	1424.31	

Se propone el reemplazo por las condiciones de la obra existente Box Coulvert de 0.80 x 0.80 m, por una alcantarilla doble de 36".

			727	11, 15	~ / I / / / /				
	Tipo de la								
	Ob	ra N°:		4	0	bra:	Disipadores abscisa K01+253		
N	Nomb	ore de la							
	Fuente:				Sin Nom	bre	Duración de la Obra:	Permanente	
	Coor				S		Altura(m):	10.96	
LON	LONGITUD (W)								
	- >	〈 ` ` ´	LA	TITUE	(N) Y	Z	Ancho(m):	2.50	
							Longitud(m):	30	
							Pendiente longitudinal		
75	10	12 112	6	3	57.387	1459.3	(%)	0.37	
-/5	-75 10 43.112		О	3	37.307	1459.5	Profundidad de		
							Socavación(m):	0.68	
							Capacidad(m3/seg):	1.02	

Ruta: \\cordc01\S.Gestion\APOYO\Gestión Jurídica\

Vigente desde:

F-GJ-174 V.03

Conectados por la Vida, la Equidad y el Desarrollo Sostenible

ı	1 1		1 1	i	İ	
						Cota Lámina de agua de
						la fuente de Tr= 100
						años (m) 1424.60
						Cota Batea de la obra(m) 1413.33
			m y Anch	o: 2,5 m,	con una	disipación con una Huella: 4 m Contrahuella: 1,5 altura de 10.96 de acuerdo con las cotas que se hidráulica.
						Alcontorillo doble 36"
Obs	erva	ciones:			1.5009	4,0000
4						

				\			22372		
					Tip	o de la	a and a second		
	Obra	N°:		5		Obra:	Tubería abscisa K01+860		
Nomb	re de	la Fuen	te:	5	Sin Nom	bre	Duración de la Obra:	Permanente	
		Co	order	nadas			Longitud(m):	8.10	
LONG	LONGITUD (W) - X LAT				(N) Y	Z	Diámetro(m):	0.90	
				-		2.	Pendiente Longitudinal		
-75	10	30.92	6	4	6.62	1494.0	(m/m):	0.01	
						, minney .	Capacidad(m³/seg):	0.16	
-75	10	30.90	6	4	6.468	1499.8	Cota Lámina de agua de la		
-/5	10	30.90	О	4	0.400	1499.8	fuente de Tr= 100 años (m)	1468.61	
				1		and the second	Cota Batea (m)	1468.09	
		Se	proye	cta la c	onstruc	ción de un	a obra de cruce vial nueva, que c	onsiste en una tubería	
		de 3	36", E	l encol	e se rea	alizará a tra	avés de una caja en concreto de	2.0 m de ancho y 2.15	
		m c	le altu	ıra, de	acuerd	lo a lo obt	enido de la modelación hidráulio	ca presentada en Hec	

Ras.

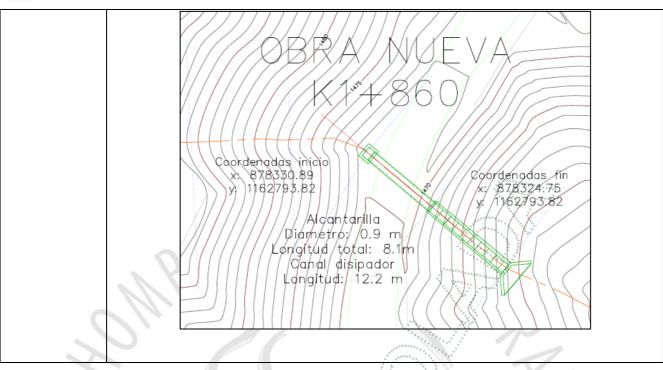
Observaciones:

No se consideran las coordenadas incluidas en el plano de planta, dado que estas difieren de lo que se presenta en el informe hidráulico, las cuales coinciden con lo verificado en campo.

Ruta: \\cordc01\S.Gestion\APOYO\Gestión Jurídica\

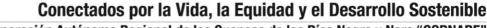
Vigente desde:

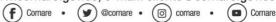
F-GJ-174 V.03

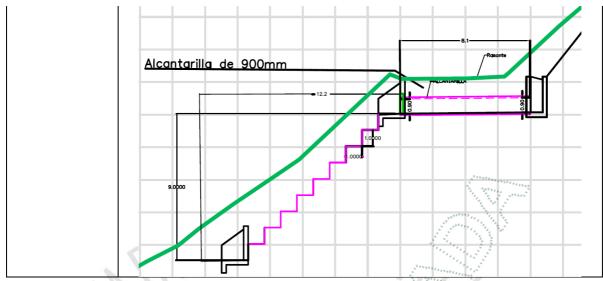


			\	<u> </u>	107 A	22222		
					o de la	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	bra N°:		6	Obra:		Disipadores abscisa K01+860		
Nom	ibre de la							
F	uente:	19	Sin Nombre			Duración de la Obra:	Permanente	
	Co	oorde	enada	S		Altura(m):	9.0	
LONGI	TUD (W)				3.			
- / / -	Χ	LA	TITUD	(N) Y	Z;;;;;;;	Ancho(m):	2.0	
				A	**********	Longitud(m):	12.2	
		A				Pendiente longitudinal (%)	0.74	
-75 1	0 30.90	6	4	6.468	1499.8	Profundidad de		
					essent a sessent	Socavación(m):	0.49	
					3774	Capacidad(m³/seg):	0.16	
		367		i de de de		Cota Lámina de agua de		
					**********	la fuente de Tr= 100	,	
	6			*********		años (m)	1468.31	
	PA		100	Service Services	200	Cota Batea de la obra(m)	1459.03	
Observa	aciones:					na obra de disipación tipo esc m Contrahuella: 1 m y Ancho:		

Ruta: \\cordc01\S.Gestion\APOYO\Gestión Jurídica\


Vigente desde:


F-GJ-174 V.03



	01	. NIO		_		o de la	A 4	1/04 000		
		a N°:		7		Obra:	Ataguía abscisa K01+860			
Nomb	ore de	e la Fue	ente: Sin Nom			nbre	Duración de la Obra:	Provisional		
4		Co	order	nadas			Altura(m):	0.50		
LONG	SITUE) (W) -								
i	Χ		LAT	TTUD	(N) Y	Z	Ancho(m):	No Reporta		
	10						Longitud(m):	8.10		
75	10	30.92		1	6.60	1404.0	Pendiente longitudinal (%)	0.54		
-75	10	30.92	30.92	6	4	6.62	1494.0	Profundidad de		
								Socavación(m):	0.49	
						3.	Capacidad(m³/seg):	0.08		
						3, 5	Cota Lámina de agua de			
-75	10	30.90	6	4	6.468	1499.8	la fuente de Tr= 100			
				N 1		122.2	años (m)	1470.46		
1115							Cota superior de la obra			
					1331323	in the second	(m)	1457.46 -1470.51		
	-		S	e plan	itea una	a obra ter	nporal que cosiste en una a	taguía en sacos de		
Obse	ervaci	ones:	suelo para encauzar la fuente durante el proceso constructivo para 10 años.							

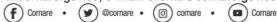
)		2,000,000				
			-		Tipo	de la		
Obra N°:			30	8	0	bra:	Tubería abscisa K01+940	
Nomb	Nombre de la Fuente:				in Nom	bre	Duración de la Obra:	Permanente
		Coo	rdena	das		Longitud(m):	13.5	
LONG	ITUD	(W) - X	LAT	ITUD	(N) Y	Ζ	Diámetro(m):	0.90
		*******		U	ONO	// / DI	Pendiente Longitudinal	
-75	10	30.87	6	4	9.007	1513.5	(m/m):	0.26
							Capacidad(m ³ /seg):	1.26
	*****	The state of the s					Cota Lámina de agua	
-75	10	30.851	6	4	8.764	1513.0	de la fuente de Tr= 100	
							años (m)	1472.67
	,	erececusa.					Cota Batea (m)	1472.38
Se propone la extensión de la obra existente de geometría mixta, que en su								

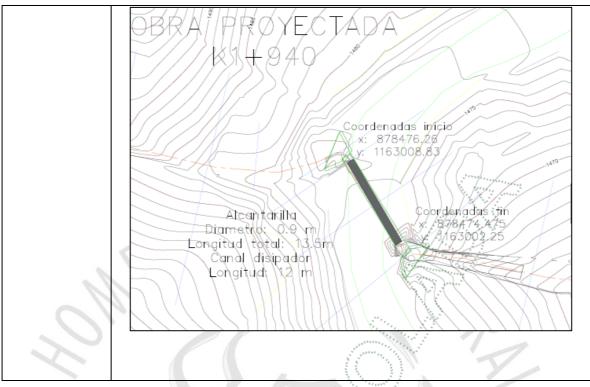
Observaciones:

condición actual tiene una sección circular de 36" con una longitud de 5 m y sección en Box Coulvert de 0.90 x 0.90m, con una longitud de 5.35 m, la sección a extender es la circular en una longitud de 8.15m.

Ruta: \\cordc01\S.Gestion\APOYO\Gestión Jurídica\

Vigente desde:


F-GJ-174 V.03



3,75,75,75,75,75,75,75,75,75,75											
				de la	of the state of th						
	a N°:		9		bra:	Disipadores abscis					
Nomb	ore de	la Fuen			Sin Nom	bre	Duración de la Obra:	Permanente			
Coordenadas							Altura(m):	1.50			
LONG	GITU	D (W) -					The state of the s				
	X			ITUE) (N) Y	Z	Ancho(m):	1.0			
			7			31,100	Longitud(m):	12.0			
1 1/11/		A =			143	***********	Pendiente longitudinal				
					444		(%)	0.47			
-75	10	30.851	6	4	8.764	1513.0	Profundidad de				
					333333	and a second	Socavación(m):	0.34			
						37%	Capacidad(m³/seg):	1.26			
								1.20			
						Seeces	Cota Lámina de agua de la fuente de Tr= 100				
		2		2				4 470 00			
	- 1	20			***********		años (m)	1470.26			
		10		11			Cota Batea de la obra(m)	1464.62			
	Op.				Se propone la construcción de un canal disipador de Huella: 2 m Contrahuella: 1 m y Ancho: 1.5 m						
	14			trahu	ıella: 1 r	n y Anch	o: 1.5 m				
		*,	Alcantarilla de 900mm								
		22222222									
		3, 34,		-	-		AX "				
Ohs	Observaciones:						" V	ı			
	OI Vac	TOMICO.									
	2		- 1	-	-						
	" I reacce that										
				-	-						

Tipo de la 10 Obra: Ataguía abscisa K01+940 Obra N°:

Ruta: \\cordc01\S.Gestion\APOYO\Gestión Jurídica\

Vigente desde:

F-GJ-174 V.03

® icontec ISO 9001

Conectados por la Vida, la Equidad y el Desarrollo Sostenible

Nombre de la Fuente:				Sin Nombre			Duración de la Obra:	Provisional
Coordenadas							Altura(m):	1.10
LON	LONGITUD (W) -							
	X		LATITUD (N) Y			Z	Ancho(m):	No Reporta
							Longitud(m):	6.20
							Pendiente longitudinal (%)	0.22
-75	10	30.87	6	4	9.007	1513.5	Profundidad de	
							Socavación(m):	0.34
							Capacidad(m³/seg):	0.62
							Cota Lámina de agua de	
-75	10	30.851	6	4	8.764	1513.0	la fuente de Tr= 100	7777711777711777
							años (m)	1472.72
				4	200	\mathbf{D}	Cota superior de la obra	
			-			M	(m)	1473.48
		Se plantea una obra temporal que cosiste en una ataguía en sacos de						
Observaciones:			suelo para encauzar la fuente durante el proceso constructivo para un Tr=					
			10 años					

PARÁGRAFO PRIMERO: Esta autorización se otorga considerando que las obras referidas se ajustarán totalmente a la propuesta de diseño teórica (planos y memorias de cálculo) presentada en los estudios que reposan en el expediente de Cornare N° 051970542716.

PARÁGRAFO SEGUNDO: El permiso se otorga de forma permanente para las Obras Nº 1,2,3,4,5,6,8 y 9 y por un periodo de una semana para las Obras N°7 y 10, contados a partir del inicio de las obras autorizadas

PARAGRAFO TERCERO: La parte interesada deberá informar a Cornare una vez se inicien los trabajos correspondientes a la presente autorización con el fin de realizar el control y seguimiento respectivo.

ARTÍCULO SEGUNDO: ACOGER las Medidas de Prevención y Mitigación Ambiental para las Obras Principales de ocupación de cauce planteadas y complementarias allegadas a La Corporación en el presente trámite, ya que se ajusta a los lineamientos Corporativos establecidos para su ejecución.

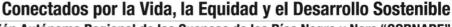
ARTICULO TERCERO: REQUERIR a la GOBERNACION DE ANTIQUIA para que un término de guince (15) días, contados a partir de la ejecutoria del presente acto administrativo, entregue nuevamente los planos denominados "PLANOS ESTRUCTURALES ALCANTARILLAS Ø0.90m DETALLES" de manera que se pueda realizar la adecuada lectura de la información allí contenida de dimensiones y detalles, la cual no es legible, y que se había solicitado mediante radicado CS-14653 del 12 de diciembre del 2023 y CS-04701-2024 del 02 de mayo de 2024, y que no fue resuelto en la respuesta entregada a través del radicado CE-02939-2024 del 20 de febrero de 2024 y CE-07446-2024 del 06 de mayo de 2024.

ARTICULO CUARTO: INFORMAR a la GOBERNACION DE ANTIQUIA que deberá garantizar a La Corporación que todas las obras principales y complementarias del proyecto que se encuentren ubicadas en el cauce natural o permanente o en su ronda hídrica deben estar incluidas en el trámite de ocupación de cauce y su autorización por parte de La Corporación.

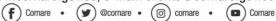
ARTICULO QUINTO: INFORMAR a la GOBERNACION DE ANTIOQUIA que las obras a implementar fueron presentadas bajo el diseño hidráulico. Estas deberán contar con el respectivo estudio geotécnico y estructural a fin de garantizar que sean factibles bajo el punto de vista constructivo

ARTICULO SEXTO: La autorización que se otorga mediante esta providencia, ampara únicamente las obras descritas en el artículo primero de la presente resolución.

Ruta: \\cordc01\S.Gestion\APOYO\Gestión Jurídica\


Vigente desde:

F-GJ-174 V.03



ARTÍCULO SEPTIMO: Cualquier modificación en las condiciones de la autorización de ocupación de cauce, deberá ser informada inmediatamente a La Corporación para su evaluación y aprobación.

ARTICULO OCTAVO: REMITIR la presente actuación al grupo de recurso hídrico de la subdirección de recursos naturales para el control y seguimiento.

ARTICULO NOVENO: No podrá usar o aprovechar los recursos naturales más allá de las necesidades del proyecto y de lo aprobado por esta entidad.

ARTÍCULO DECIMO: Al detectarse efectos ambientales no previstos, deberá informar de manera inmediata a La Corporación, para que ésta determine y exija la adopción de las medidas correctivas necesarias, sin perjuicio de las que deba adoptar por cuenta propia al momento de tener conocimiento de los hechos.

ARTÍCULO DECIMO PRIMERO: INFORMAR al interesado que mediante Resolución No 112-0395-2019 del 13 de febrero de 2019, la Corporación aprobó El Plan de Ordenación y Manejo de La Cuenca Hidrográfica del río Samaná Norte, y que mediante Resolución RE-02048-2022 del 02 de agosto de 2022 se modifica los literales b, c y d del artículo 5° de las Resoluciones Nos.112-0395, 112-0394, 112-0397 del 13 de febrero de 2019 en la cual se localiza la actividad para la cual se otorga la presente autorización.

ARTÍCULO DECIMO SEGUNDO: ADVERTIR al interesado que las normas sobre manejo y aprovechamiento de los recursos naturales renovables previstas en el Plan de Ordenación y Manejo de la Cuenca Hidrográfica del río Samaná Norte priman sobre las disposiciones generales establecidas en otro ordenamiento administrativo, en las reglamentaciones de corrientes o en los permisos, concesiones, licencias ambientales y demás autorizaciones otorgadas antes de entrar en vigencia el respectivo Plan.

ARTÍCULO DECIMO TERCERO: INFORMAR al interesado que el Plan de Ordenación y Manejo de la Cuenca Hidrográfica del río Samaná Norte constituye norma de superior jerarquía y determinante ambiental de los planes de ordenamiento territorial de las Entidades Territoriales que la conforman y tienen jurisdicción dentro de la misma, de conformidad con la Ley 388 de 1997 artículo 10 y el artículo 2.2.3.1.5.6 del decreto 1076 de 2015.

PARAGRAFO: Los POMCAS, la resolución y fecha se pueden encontrar en la página web: https://www.cornare.gov.co/planes-de-ordenacion-y-manejo-de-cuencas-hidrograficaspomcas/

ARTÍCULO DÉCIMO CUARTO: El incumplimiento de las obligaciones contenidas en la presente resolución dará lugar a la aplicación las sanciones que determina la ley 1333 de 2009, sin perjuicio de las penales o civiles a que haya lugar.

ARTÍCULO DÉCIMO QUINTO: NOTIFICAR personalmente del presente acto administrativo a la GOBERNACIÓN DE ANTIOQUIA a través de su delegado, el Secretario de Despacho de la SECRETARIA DE INFRAESTRUCTURA FÍSICA, LUIS HORACIO GALLÓN ARANGO, o quien haga sus veces.

PARÁGRAFO: De no ser posible la notificación personal, se hará en los términos estipulados en el Código de Procedimiento Administrativo y de lo Contencioso Administrativo.

ARTÍCULO DÉCIMO SEXTO: Indicar que contra la presente actuación procede el recurso de reposición, el cual deberá interponerse personalmente y por escrito ante el mismo funcionario que profirió este acto administrativo, dentro de los diez (10) días hábiles siguientes a su notificación, según lo establecido en el Código de Procedimiento Administrativo y de lo Contencioso Administrativo.

Ruta: \\cordc01\S.Gestion\APOYO\Gestión Jurídica\

Vigente desde:

F-GJ-174 V.03

ARTÍCULO DÉCIMO SEPTIMO: Ordenar la PUBLICACIÓN del presente acto administrativo en Boletín Oficial de Cornare a través de su Página Web, conforme lo dispone el artículo 71 de la Ley 99 de 1993.

NOTIFÍQUESE, PUBLÍQUESE Y CÚMPLASE

Proceso: tramite ambiental Asunto: permiso ocupación de cauce

Ruta: \\cordc01\S.Gestion\APOYO\Gestión Jurídica\

Vigente desde:

F-GJ-174 V.03

